Imec news

Major step towards low-power all-optical switching for optical communications




25/1/2010

Leuven, January 25, 2010 – The January issue of the premier scientific magazine Nature Photonics publishes an ultra-small and fast, electrically pumped all-optical memory on a silicon chip with record low power consumption. This result achieved by imec and its associated laboratory INTEC at the Ghent University, paves the way for optical packet switching with drastically reduced overall power consumption in high-speed, high-data rate optical telecommunication systems.

Fiber-optic communication systems have revolutionized the telecommunications industry and play a crucial role in today’s information age where long-distance and high-data rate communication is indispensable. While the transportation of the data bits between different points in such networks normally makes use of light pulses, it is quite a different story for the switching and routing of the data at the network nodes. Due to the absence of good optical random access memories, up to now, the data needed to be converted from the optical to the electrical domain and electronic switches with microelectronic processors were needed. However, with the ever increasing amount of data the power consumption of such optoelectronic switches increases dramatically.

Researchers from imec and Ghent University in Belgium realized extremely fast and small optical random access memories with record low power consumption. This discovery paves the way to do the switching in optical fiber networks or optical interconnect systems completely optically and to no longer rely on optoelectronic conversions.

The optical random access memory has been achieved with ultra-compact micro-disk lasers with a diameter of 7.5µm. The laser light can either propagate in the clockwise or counter clockwise direction and one can switch between these two laser modes using short optical pulses. The lasers, implemented themselves in Indium Phosphide membranes, are heterogeneously integrated onto passive silicon waveguide circuits. This allows to optically interconnect different memory cells using silicon wires. It also allows to use the strongly developed silicon-based microelectronics fabrication technology, making it a cost-effective solution.

These results were achieved in collaboration with TU Eindhoven and INL (Institute for Nanotechnology in Lyon) in the framework of the European FP7 projects HISTORIC and WADIMOS coordinated by imec- INTEC.

  ---ends---

About imec
Imec performs world-leading research in nano-electronics. Imec leverages its scientific knowledge with the innovative power of its global partnerships in ICT, healthcare and energy. Imec delivers industry-relevant technology solutions. In a unique high-tech environment, its international top talent is committed to providing the building blocks for a better life in a sustainable society.
Imec is headquartered in Leuven, Belgium, and has offices in Belgium, the Netherlands, Taiwan, US, China and Japan. Its staff of more than 1,650 people includes over 550 industrial residents and guest researchers. In 2008, imec's revenue (P&L) was 270 million euro.
Further information on imec can be found at www.imec.be.

Imec is a registered trademark for the activities of IMEC International (a legal entity set up under Belgian law as a "stichting van openbaar nut”), imec Belgium (IMEC vzw supported by the Flemish Government), imec the Netherlands (Stichting IMEC Nederland, part of Holst Centre which is supported by the Dutch Government) and imec Taiwan (IMEC Taiwan Co.).


About Ghent University
Ghent University, abbreviated to UGent, was founded in 1817 and is one of the major universities in the Dutch-speaking region of Europe. It distinguishes itself as a socially committed and pluralistic university in a broad international perspective.
Over 130 faculty departments, spread over 11 faculties, offer high-quality courses in every one of their scientific disciplines.

Contact:
imec : Katrien Marent, Director of External Communications, T: +32 16 28 18 80, Mobile : +32 474 30 28 66, katrien.marent@imec.be





Back to overview